It is Time to Address Airborne Transmission of COVID-19

Lidia Morawska1,*, Donald K. Milton2

1International Laboratory for Air Quality and Health, WHO Collaborating Centre, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001 Australia. Email: l.morawska@qut.edu.au

2Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Campus Dr, College Park, Maryland, USA. Email: dmilton@umd.edu

Corresponding author: Lidia Morawska, Email: l.morawska@qut.edu.au

Keywords: airborne transmission; airborne infection spread; coronavirus; COVID-19; SARS-CoV-2 virus.
Commentary

We appeal to the medical community and to the relevant national and international bodies to recognize the potential for airborne spread of COVID-19. There is significant potential for inhalation exposure to viruses in microscopic respiratory droplets (microdroplets) at short to medium distances (up to several meters, or room scale), and we are advocating for the use of preventive measures to mitigate this route of airborne transmission.

Studies by the signatories and other scientists have demonstrated beyond any reasonable doubt that viruses are released during exhalation, talking, and coughing in microdroplets small enough to remain aloft in air and pose a risk of exposure at distances beyond 1 to 2 m from an infected individual (see e.g. [1-4]). For example, at typical indoor air velocities [5], a 5 μm droplet will travel tens of meters, much greater than the scale of a typical room, while settling from a height of 1.5 m to the floor. Several retrospective studies conducted after the SARS-CoV-1 epidemic demonstrated that airborne transmission was the most likely mechanism explaining the spatial pattern of infections e.g. [6]. Retrospective analysis has shown the same for SARS-CoV-2 [7-10]. In particular, a study in their review of records from a Chinese restaurant, observed no evidence of direct or indirect contact between the three parties [10]. In their review of video records from the restaurant, they observed no evidence of direct or indirect contact between the three parties. Many studies conducted on the spread of other viruses, including respiratory syncytial virus (RSV) [11], Middle East Respiratory Syndrome coronavirus (MERS-CoV) [8], and influenza [2,4], show that viable airborne viruses can be exhaled [2] and/or detected in the indoor environment of infected patients [11-12]. This poses the risk that people sharing such environments can potentially inhale these viruses, resulting in infection and disease. There is every reason to expect that SARS-CoV-2 behaves similarly, and that transmission via airborne microdroplets [10,13] is an important pathway. Viral RNA associated with droplets smaller than 5 μm has been detected in air [14], and the virus has
been shown to maintain infectivity in droplets of this size [9]. Other viruses have been shown to survive equally well, if not better, in aerosols compared to droplets on a surface [15].

The current guidance from numerous international and national bodies focuses on hand washing, maintaining social distancing, and droplet precautions. Most public health organizations, including the World Health Organization (WHO) [16], do not recognize airborne transmission except for aerosol-generating procedures performed in healthcare settings. Hand washing and social distancing are appropriate, but in our view, insufficient to provide protection from virus-carrying respiratory microdroplets released into the air by infected people. This problem is especially acute in indoor or enclosed environments, particularly those that are crowded and have inadequate ventilation [17] relative to the number of occupants and extended exposure periods (as graphically depicted in Figure 1). For example, airborne transmission appears to be the only plausible explanation for several superspreading events investigated which occurred under such conditions e.g. [10], and others where recommended precautions related to direct droplet transmissions were followed.

The evidence is admittedly incomplete for all the steps in COVID-19 microdroplet transmission, but it is similarly incomplete for the large droplet and fomite modes of transmission. The airborne transmission mechanism operates in parallel with the large droplet and fomite routes, e.g. [16] that are now the basis of guidance. Following the precautionary principle, we must address every potentially important pathway to slow the spread of COVID-19. The measures that should be taken to mitigate airborne transmission risk include:

- Provide sufficient and effective ventilation (supply clean outdoor air, minimize recirculating air) particularly in public buildings, workplace environments, schools, hospitals, and aged care homes.
- Supplement general ventilation with airborne infection controls such as local exhaust, high efficiency air filtration, and germicidal ultraviolet lights.
- Avoid overcrowding, particularly in public transport and public buildings.
Such measures are practical and often can be easily implemented; many are not costly. For example, simple steps such as opening both doors and windows can dramatically increase air flow rates in many buildings. For mechanical systems, organizations such as ASHRAE (the American Society of Heating, Ventilating, and Air-Conditioning Engineers) and REHVA (the Federation of European Heating, Ventilation and Air Conditioning Associations) have already provided guidelines based on the existing evidence of airborne transmission. The measures we propose offer more benefits than potential downsides, even if they can only be partially implemented.

Figure 1. Distribution of respiratory microdroplets in an indoor environment with (a) inadequate ventilation and (b) adequate ventilation.

It is understood that there is not as yet universal acceptance of airborne transmission of SARS-CoV2; but in our collective assessment there is more than enough supporting evidence so that the precautionary principle should apply. In order to control the pandemic, pending the availability of a vaccine, all routes of transmission must be interrupted.

We are concerned that the lack of recognition of the risk of airborne transmission of COVID-19 and the lack of clear recommendations on the control measures against the airborne virus will have significant consequences: people may think that they are fully protected by adhering to the current recommendations, but in fact, additional airborne interventions are needed for further reduction of infection risk.

This matter is of heightened significance now, when countries are re-opening following lockdowns - bringing people back to workplaces and students back to schools, colleges, and universities. We hope that our statement will raise awareness that airborne transmission of COVID-19 is a real risk and that control measures, as outlined above, must be added to the other precautions taken, to reduce the severity of the pandemic and save lives.
Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of any agency/institution.

Acknowledgment

Together with the authors, 239 scientists support this Commentary, and their affiliations and contact details are listed in the Supplementary.

The following scientists contributed to formulating this commentary: Linsey C. Marr, William Bahnfleth, Jose-Luis Jimenez, Yuguo Li, William W. Nazaroff, Catherine Noakes, Chandra Sekhar, Julian Wei-Tze Tang, Raymond Tellier, Philomena M. Bluyssen, Atze Boerstra, Giorgio Buonanno, Junji Cao, Stephanie J. Dancer, Francesco Franchimon, Charles Haworth, Jaap Hogeling, Christina Isaxon, Jarek Kurnitski, Marcel Loomans, Guy B. Marks, Livio Mazzarella, Arsen Krikor Melikov, Shelly Miller, Peter V. Nielsen, Jordan Peccia, Xavier Querol, Olli Seppänen, Shin-ichi Tanabe, Kwok Wai Tham, Pawel Wargocki, Aneta Wierzbicka, Maosheng Yao.

References

8 Buonanno et al., Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: perspective and retrospective applications. *medRxiv*, **2020**; doi: https://doi.org/10.1101/2020.06.01.20118984 (accessed 23/06/2020).

Figure 1